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A B S T R A C T   

Although conventional metamaterials possess extraordinary properties, they cannot meet the practical re-
quirements of engineering structures subjected to both temperature fluctuations and vibration excitations. To 
bridge this research gap, this paper proposes a novel dual-functional metamaterial with zero thermal expansion 
and broadband vibration suppression. Inspired by the thermal mismatch and band gap effects, we present an 
innovative design strategy that incorporates star-shaped re-entrant lattices and locally rudder-shaped struts with 
two-phase materials. To effectively guide the coupled design, a theoretical model accounting for stretching- 
bending deformations is established to predict the thermoelastic behavior of the metamaterial. Moreover, a 
parameterized dynamic model using the spectral element method is developed to study the vibration charac-
teristics. Particularly, the spectral formulation of curved Timoshenko beams is derived, including in-plane and 
out-of-plane vibrations. The comparisons between theoretical predictions and finite element simulations validate 
the accuracy of analytical models in characterizing thermal deformations and vibration responses. Finally, the 
case studies shed light on the underlying formation mechanisms of zero thermal expansion and multiple band 
gaps, while also unveiling the effects of geometric parameters on the performance of such dual-functional 
metamaterials. Our innovative design strategy and analytical methodology not only offer appealing alterna-
tives for engineering applications but also push the boundaries of metamaterial properties by enabling the 
transition from single- to dual-functionality.   

1. Introduction 

Manipulating structural deformation and vibration responses is of 
paramount significance across numerous high-level engineering appli-
cations [1,2]. Taking extendible support structures [3] of satellite an-
tennas as an example, they inevitably suffer from drastic temperature 
swings and various dynamic loadings in outer space [4]. External stimuli 
may induce excessive thermal deformation and undesired structural 
deformation/vibration, resulting in accuracy degradation and even 
system failure. Particularly, it is worth noting that these external stimuli 
applied to structures are generally stochastic and time-space dependent. 
It is challenging or even infeasible to design an additional controller for 
effectively regulating the structural responses [5]. Therefore, a natural 
concern is whether structures can be endowed with extraordinary 

mechanical properties that enable them to smartly accommodate com-
plex shifting scenarios, such as zero thermal expansion and vibration 
self-attenuation [6]. 

It is still an indisputable fact that zero thermal expansion does not 
exist in naturally occurring or traditionally manufactured materials. 
Fortunately, the emergence of metamaterials gives birth to the possi-
bility of customizing coefficients of thermal expansion (CTE). There are 
two main strategies to change CTE from negative to positive. One 
strategy is to utilize supramolecular mechanisms [7], e.g., phonon 
modes and phase transitions [8], to adjust the CTE. However, the desired 
thermal properties are achieved under harsh conditions at the cost of 
robustness and durability [9], which seriously limits their practical ap-
plications [10]. The second strategy relies on carefully engineering 
composite structures with different constituent materials [11], in which 
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the thermal mismatch can lead to contractionary deformation. To ensure 
high stability and reliability [12], different deformation modes have 
been introduced into metamaterials to achieve a wide range of tunable 
CTE. 

Recent studies on mechanical metamaterials have shown that the 
ideal CTE can be achieved by ingenious microstructure design and 
appropriate constituent selection [13–15]. Inspired by the thermal 
shrinkage mechanism of ZrW2O8 [16], Jefferson et al. [17] designed a 
hexagonal grid structure to counteract the expansion effect with the 
flexural rotation of two Lakes-type bending components. Lehman et al. 
[18] and Ha et al. [19] showed that tuning the geometric parameters of 
bi-material curved ribs is an effective way to obtain desired thermal 
properties. According to the uncoordinated deformation principle of 
bi-material beams, other bending-dominated architectures, such as 
re-entrant honeycombs [20] and polytope sectors [21], could also 
exhibit tailorable CTE. Though such bending-dominated metamaterials 
have wider tunable CTE [22], their mechanical properties are inferior to 
those of stretching-dominated counterparts [23,24]. After all, thermally 
induced stresses are dominantly determined by axial forces. For this 
reason, Wei et al. [25,26] utilized a bi-material diamond lattice to 
construct various stretching-dominated metamaterials with program-
mable CTE. In a word, the structure-thermal property relationships have 
been investigated for stretching-dominated metamaterials that are 
composed of star-square networks [27], pyramid-tetrahedron unit cells 
[28], octet-truss lattices [29], etc. By employing distinct spatial tessel-
lations in planar configurations, three-dimensional (3D) metamaterials 
were developed to yield out-of-plane programmable CTE [14,30,31]. 
Unfortunately, metamaterials with high thermal-mechanical stability 
over a broad temperature range are still scarce [32]. It is noteworthy 
that relying solely on numerical simulation may not provide substantial 
insights into the underlying physics. Therefore, analytical formulations 
are sought to predict the equivalent elastic properties of the meta-
material. Addressing this need, Mukhopadhyay and Adhikari [33,34] 
derived the effective elastic moduli of irregular honeycombs by 
analyzing the representative unit cells with symmetric boundary con-
ditions. However, as indicated in [35], the lack of high-accurate theo-
retical models for predicting the thermoelastic behaviors of 
metamaterials has hindered their development and prospective 
applications. 

Apart from thermal expansion properties, the vibration suppression 

performance of mechanical metamaterials should also be considered to 
meet the practical requirements of many engineering applications 
[36–38]. The vibration suppression ability of a metamaterial strongly 
depends on its band gap, within which elastic wave propagation is 
prohibited [39]. From the formation mechanism, there are two types of 
band gaps. Bragg scattering (BS) band gaps [40] are formed by the 
destructive interference of elastic waves scattered by periodic in-
homogeneity. Local resonance (LR) band gaps [41] are induced by the 
out-of-phase motions of local resonators. Numerous efforts have been 
devoted to generating multiple and/or broadband gaps with different 
strategies [42–44]. Regarding the theoretical modeling of meta-
materials, prevailing techniques include the finite element method 
(FEM) [45,46], the transfer matrix method (TMM) [47,48], the plane 
wave expansion (PWE) method [49,50], and the spectral element 
method (SEM) [51,52]. Among these approaches, SEM has attracted lots 
of attention because of its superiority in feasibility and efficiency [53]. 
According to the existing literature, SEM formulations have been 
well-established for common elements like the regular Timoshenko 
beam [54] and the Levy-type plate [55]. Recently, Prasad et al. [56–58] 
employed the TMM to analyze wave propagation in periodic curved 
beams with variable cross-sections. These investigations accounted for 
the extension effect of the centroid axis of the curved beam, as well as 
the effects of shear and rotary inertia. However, how to derive the SEM 
formulation of curved beams, which are standard and common com-
ponents in many engineering structures, remains to be explored. 

Dual- and even multi-functional metamaterials are especially 
attractive when confronting complex thermal and dynamic loading 
conditions [59]. Inspired by the rigid unit model [60], some scholars 
[27,61–63] designed metamaterials with negative Poisson ratios and 
negative thermal expansion. Lu et al. [64] developed a dual-functional 
metamaterial beam with energy harvesting and vibration control abili-
ties. Besides, several attempts have been made to improve the trans-
mittance proprieties of bending- [65] and stretching-dominated [66] 
thermal metamaterials. Nevertheless, dual-functional metamaterials 
featuring zero CTE and broadband vibration suppression ability have 
not been reported yet [67]. 

As reviewed above, it can be found that the following questions 
remain to be answered. (1) Without direct mechanistic relation, can zero 
CTE and vibration suppression be simultaneously integrated into a 
metamaterial design? (2) How to construct theoretical formulations of 

Fig. 1. Schematic of the 3D dual-functional metamaterial. (a) 2D unit cell; (b) 3D unit cell; (c) Thermoelastic metamaterial with the periodically arrayed unit cells. In 
this design, each metamaterial unit cell consists of exterior star-shaped re-entrant lattices and interior rudder-shaped reinforced struts. Additionally, two colors are 
used to characterize two metallic materials with distinct CTEs. 
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such complicated dual-function metamaterials for guiding their design 
and optimization? (3) Considering the irregular components of the 
metamaterial, how to extend the SEM to characterize the dynamic re-
sponses of curved beams? 

Motivated by the above research gaps, this paper aims to propose a 
3D metamaterial with both zero CTE and broadband vibration sup-
pression ability. For this purpose, the coupling deformation and thermal 
mismatch of bi-materials are introduced into the star-shaped re-entrant 
structure with rudder-shaped reinforcement struts. The relationships 
between the geometric parameters and the thermodynamic character-
istics are investigated. The desired zero thermal expansion and excellent 
vibration suppression ability are achieved by tailoring the 
microstructure. 

The rest of the paper is structured as follows. The design strategy and 
topology configuration of the novel dual-functional metamaterial are 
first elucidated in Section 2. The thermoelastic model is established in 
Section 3. The SEM formulation is developed in Section 4. Subsequently, 
Section 5 presents the feasibility of the proposed methodology and 
discusses the performance of such dual-functional metamaterials. 
Finally, Section 6 summarizes the concluding remarks. 

2. Geometric configuration of the novel mechanical 
metamaterial 

This section elaborates on the design conception and topology 
configuration of the dual-functional metamaterial, which is endowed 
with extraordinary thermal expansion properties and vibration sup-
pression ability. 

2.1. Design conception of the novel dual-functional metamaterial 

Starting from the fundamental methodologies for achieving zero CTE 
and vibration suppression, this subsection will propose an integrated 
design strategy that combines different materials in a meta-structure, 
leveraging principles of thermal mismatch and wave propagation. 

Fundamentally, the primary idea behind zero CTE design is rooted in 
applying the flexural bending of sub-components to accommodate the 
overall expansion of the microstructure. Moreover, the vibration sup-
pression design originates from employing locally resonant units to form 
band gaps. A novel 3D dual-functional metamaterial is designed by 
incorporating these principles, as illustrated in Fig. 1. In detail, the star- 
shaped re-entrant lattice is adopted as the exterior structure of the unit 
cell to change thermomechanical behaviors through thermal expansion 
incompatibility. To strike a balance between weight and stiffness, 
rudder-shaped reinforcement struts are introduced into the interior of 
the unit cell. By incorporating inclined and curved beams, this design 
will exhibit stretching-dominated modes with bending-dominated be-
haviors to enhance the mechanical properties. 

Additionally, bi-materials are selected to realize simultaneously zero 
thermal expansion and vibration suppression. The material of the 
exterior struts (in chartreuse), as depicted in Fig. 1, has a higher CTE. 
Another material with a lower CTE is selected for the interior struts (in 
cyan). Through the structural interactions between two constituents, 
localized rotation and/or bending of particular segments are initiated to 
enable their thermal expansion to be accommodated within the internal 
space rather than the external space, thereby achieving the invariance of 
the overall volume. Furthermore, due to the mechanical impedance 

Fig. 2. Symmetrical boundary conditions and free-body diagrams of the components in the metamaterial unit cell. (a) one-eighth of the 3D unit cell under sym-
metrical boundary conditions; (b) and (c) force diagrams of the in-plane substructure; (d) free-body diagram of the internal substructure. During the thermoelastic 
deformation, the front, right, and top surfaces of the metamaterial remain flat. 
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mismatch and the local resonant modes of the inclusions, such com-
posite metamaterial structures tend to form BS and LR band gaps [68]. 

2.2. Characterization of the novel dual-functional metamaterial 

According to the proposed integrated design strategy, this subsection 
will introduce the topological configuration and geometric characteris-
tics of the novel dual-functional metamaterial in detail. 

The geometry of the representative 2D unit cell is determined by six 
independent variables, i.e., L, R, a, b, t, and θ. As indicated in Fig. 1(a), L 
is the length of the bevel edge of the internal structure; R is the radius of 
curved beams; a is the length of the strut connecting to other unit cells; b 
is the distance from the bottom of the connection strut to the center of 
the unit cell; θ is the inclined angle of the internal beams; all the beams 
constituting the unit cell have the same thickness of t. Given the above 
design parameters, the lengths of the external struts can be calculated 
by: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L1 =

(

L +
t
2

tan
2θ + 2β − π

4

)
cosθ
sinβ

L2 =

(

L +
t
2

tan
2θ + 2β − π

4

)
− sinθ

cos(2θ + β)

(1)  

where the re-entrant angle β of external beams is expressed as 

β =
π
2
− θ + arctan

2bcosθ − t − tsinθ
2L − 2bsinθ − tcosθ

(2) 

Fig. 1(b) shows the 3D unit cell configuration, which is obtained by 
positioning three identical 2D unit cells on three orthogonal planes with 
their geometric centers coincident. For the sake of central symmetry, all 
beams are designed with a square cross-section. This proposed unit cell 
can be tessellated periodically along three coordinate axes to form 
lattice-based metamaterials. As explained above, the interior inclined 
struts are expected to conduct stretching-dominated deformation, and 
the exterior inclined and interior curved beams are more likely to exhibit 
bending-dominated behavior. Under the combined deformation mode 
and due to the thermal mismatch, it is feasible for the metamaterial to 
realize sign-changing CTE. Besides, the periodic arrangement of unit 
cells naturally gives rise to a metamaterial, implying the possibility of 
opening band gaps for vibration suppression from the dynamic point of 
view. 

In the following, we demonstrate that combining the bi-material 
design and the star-shaped re-entrant structure can endow the pro-
posed metamaterial with simultaneous zero thermal expansion and vi-
bration suppression ability. 

3. Derivation of the effective CTE 

This section will relate the design parameters of the unit cell to a 
particular thermomechanical response. A theoretical model is developed 
to reveal the thermoelastic deformation mechanism and quantify the 
CTE of the proposed metamaterial. 

3.1. Elastic deformation analysis 

For revealing the deformation behavior of the proposed meta-
material, this subsection will construct a theoretical model that accounts 
for both stretching and bending deformations, which also serves as a 
fundamental framework for the subsequent thermoelastic deformation 
analysis. 

Due to the cubic symmetry, taking one-eighth of its 3D unit cell as the 
representative volume element (RVE) is sufficient in the theoretical 
analysis. Symmetrical boundary conditions [69] are applied to recover 
the full 3D unit cell [70]. 

As illustrated in Fig. 2, three prescribed forces along the three axes 
are imposed on the RVE, where all boundary nodes are assumed to be at 

their respective cross-section centers. As a result of the prescribed 
boundary conditions, the three rotational degrees of freedom (DOFs) for 
all endpoints are frozen, and certain translational DOFs are restricted. 
Hence, all beams can only conduct planar deformation, allowing the 3D 
problem to be simplified into a 2D one. Taking the X-Y plane of RVE as 
an example, one can obtain two force balance equations and one 
moment equilibrium equation by referring to Fig. 2(b) and (c). In 
addition, the symmetry of the model also indicates that the displace-
ments and deflection angles at the shared connections are zero. Based on 
Castigliano’s second theorem, these boundary conditions are expressed 
as: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔxA =
∑5

j=1

(∫
Fja

EjAj

∂Fja

∂FA
dxj +

∫
κFjs

GjAj

∂Fjs

∂FA
dxj +

∫
Mjj

EjIj

∂Mjj

∂FA
dxj

)

= 0

ΔφA =
∑5

j=1

(∫
Fja

EjAj

∂Fja

∂MA
dxj +

∫
κFjs

GjAj

∂Fjs

∂MA
dxj +

∫
Mjj

EjIj

∂Mjj

∂MA
dxj

)

= 0

ΔyD =
∑5

j=1

(∫
Fja

EjAj

∂Fja

∂FD
dxj +

∫
κFjs

GjAj

∂Fjs

∂FD
dxj +

∫
Mjj

EjIj

∂Mjj

∂FD
dxj

)

= 0

ΔφD =
∑5

j=1

(∫
Fja

EjAj

∂Fja

∂MD
dxj +

∫
κFjs

GjAj

∂Fjs

∂MD
dxj +

∫
Mjj

EjIj

∂Mjj

∂MD
dxj

)

= 0

ΔφB =
∑5

j=1

(∫
Fja

EjAj

∂Fja

∂MB
dxj +

∫
κFjs

GjAj

∂Fjs

∂MB
dxj +

∫
Mjj

EjIj

∂Mjj

∂MB
dxj

)

= 0

(3)  

where the subscript “j” indicates the strut number (See Appendix A); Aj is 
the cross-section area; Ij is the second moment of area; κ is the shear 
correction factor [71]; Ej and Gj denote the elastic modulus and shear 
modulus, respectively. The internal axial force Fja, the shearing force Fjs, 
and the bending moment Mjj are detailed in Appendix A. 

Substituting the internal force expression of each beam into Eq. (3) 
yields 

CFF = BF (4)  

where CF is a 5 × 5 coefficient matrix, and BF denotes the generalized 
displacement under a single external generalized force F = [FA, MA, FD, 
MD, MB]T. 

As formulated above, we can further calculate all reaction forces 
once unknown generalized forces are solved. Accordingly, the vertical 
displacement ΔyA at point A and the horizontal displacement ΔxD at 
point D are calculated by: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ΔyA =
∑5

j=1

(∫
Fja

EjAj

∂Fja

∂Fy
dxj +

∫
κFjs

GjAj

∂Fjs

∂Fy
dxj +

∫
Mjj

EjIj

∂Mjj

∂Fy
dxj

)

ΔxD =
∑5

j=1

(∫
Fja

EjAj

∂Fja

∂Fx
dxj +

∫
κFjs

GjAj

∂Fjs

∂Fx
dxj +

∫
Mjj

EjIj

∂Mjj

∂Fx
dxj

)
(5) 

The displacements of other endpoints can be obtained likewise. After 
determining the elastic deformation, it is easy to calculate the effective 
elastic modulus according to the average stress-strain theorem [62]. 
Without loss of generality, given the uniaxial compression Δz under the 
uniform stress σz applied in the z-direction, the corresponding effective 
elastic modulus Eeff can be evaluated by: 

Eeff = 2
(a + b)

Δz
σz. (6)  

3.2. Calculation of effective CTE 

Based on the formulation of effective elastic modulus, this subsection 
will quantify the effective CTE of the metamaterial. Moreover, an 
analytical framework will be developed to achieve zero CTE by 
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converting the inverse design problem into a forward search problem. 
Given a homogeneous temperature increase ΔT, the thermal 

expansion problem is investigated to determine the effective CTE of the 
metamaterial. Since the derivation process resembles that of a purely 
elastic deformation problem, only the essential modifications are 
detailed below for the sake of brevity. Apart from the elastic deforma-
tion, an axial thermal strain in each strut is also induced by the increase 
in temperature. Therefore, the axial forces are modified as 

F
⌢

ja = Fja − EjAjαjΔT (7)  

where αj is the CTE of strut j. It is worth mentioning that the five force 
balance equations are still valid in the scenario of thermal deformation. 
Thus, the shear forces, as given out in Appendix A, remain unchanged. 

The effective CTE α of the metamaterial is determined by the ratio of 
the thermal strain εt to the temperature increase ΔT. The thermal strain 
εt can be evaluated by measuring the thermal deformation relative to the 
characteristic length, which corresponds to the total strain when 
external forces are absent. Thus, the effective CTE α of the metamaterial 
is expressed as: 

α =
εt

ΔT
=

Δy
2(a + b)ΔT

(8)  

where the vertical thermal deformation Δy can be calculated through 
Eqs. (5) and (7). 

Owing to the cubic symmetry, the effective CTE of the proposed 
metamaterial is isotropic, i.e.α = αx = αy = αz. As formulated above, it 
can be found that the CTE of the metamaterial depends on the material 
combination and geometric parameters of the unit cell. This indicates 
the possibility of tailoring the effective CTE of the metamaterial. We 
know that most natural materials have positive CTE, and some artificial 
materials may have negative CTE. A question that naturally arises is: 
what is the customizability of the proposed metamaterial? In particular, 
we wonder whether we can achieve zero CTE with such metamaterials 
for improving dimensional stability. 

As formulated above, the CTE of the metamaterial depends on the 
material combination and geometric parameters of the unit cell. The 
relationship between these properties is complex, making it challenging 
to provide a concise closed-form solution for achieving zero CTE. 
However, utilizing the developed analytical framework, once the ma-
terial properties and geometric dimensions of the unit cell are known, it 
becomes straightforward to predict the effective CTE of the meta-
material. This analysis also helps identify which specific geometric pa-
rameters play a significant role in effectively reducing the CTE to zero as 
elaborated in Section 5.3. 

From a theoretical perspective, achieving zero CTE is considered an 
inverse design problem that necessitates a systematical parameter 
search to find a design solution that meets the specified objective. In 
essence, the inverse design problem can be transformed into a forward 
search problem. Given the design space and selected materials, several 

available combinations may satisfy the requirement of zero CTE. Note 
that no direct correlation exists between thermal expansion properties 
and dynamic characteristics of the metamaterial. Hence, the enumera-
tion method is adopted first to find all possible design combinations to 
achieve zero CTE. Then, a parametric study will be conducted to explore 
the structural frequency responses, and attempts will be devoted to 
improving the vibration suppression characteristics. 

4. Dynamic model formulation 

In addition to zero CTE, multiple wide band gaps are desired for 
vibration suppression in engineering structures. This section will 
formulate the dynamic stiffness matrices (DSMs) of the constituting 
fundamental elements, i.e., straight and curved beams. The dynamic 
model of the proposed metamaterial can then be developed by assem-
bling the DSMs of the constituting elements. 

4.1. Dynamic stiffness matrix of straight beam 

Unlike planar beams, which predominantly concentrate on trans-
verse deflections, the spatial struts in the proposed metamaterial de-
mand a comprehensive analysis encompassing tensile, bending, and 
torsion deformations. Thus, this subsection is dedicated to extending the 
standard spectral beam from the 2D scenario to the 3D case. 

As shown in Fig. 3, the spectral beam element is characterized by two 
nodes and twelve DOFs. Combining the discrete Fourier transform with 
the Timoshenko beam theory, one can recast the in-plane vibration 
equations into the spectral form [43]: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EA
∂2U
∂x2 + ρAω2U = 0

κGA
∂2V
∂x2 + ρAω2V − κGA

∂Θz

∂x
= 0

κGA
∂V
∂x

+ EIz
∂2Θz

∂x2 +
(
ρIzω2 − κGA

)
Θz = 0

(9)  

where ρ and A are the material density and the cross-sectional area of the 
beam, respectively; Iz is the area moment of inertia around the z-axis. 
Under the excitation of the angular frequency ω, the amplitudes of axial 
displacement, transverse displacement, and rotation are denoted as U, V, 
and Θz, respectively. 

It can be seen from Eq. (9) that the longitudinal wave propagation is 
uncoupled with transverse displacement and rotation. Mathematically, 
the general solutions of Eq. (9) are presented as 

⎧
⎨

⎩

U = χ1e− ik0x + χ2eik0x

V = χ3e− ik1x + χ4e− ik2x + χ5e− ik3x + χ6e− ik4x

Θz = χ3α1e− ik1x + χ4α2e− ik2x + χ5α3e− ik3x + χ6α4e− ik4x

(10)  

where i denotes the imaginary unit. By solving the characteristic 

Fig. 3. Spectral element formulation for a straight Timoshenko beam. (a) Boundary displacements and rotations with complete degrees of freedom; (b) Boundary 
forces and moments at two end nodes. The discrete Fourier transform is conducted to represent all boundary conditions in the frequency domain. The global and local 
coordinate systems, i.e., X-Y-Z and x-y-z, are adopted for the convenience of variable description. 
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equations, the wavenumbers kj (j=0, 1, …, 6) are given by   

Moreover, the coefficients of general solutions satisfy the following 
relationships: 

αj = − i
κGk2

j − ρω2

κGkj
(12) 

For the two-node spectral beam element in the local reference frame, 
the boundary conditions of displace and force are imposed: 

⎧
⎨

⎩

U1 = U|x=0,U2 = U|x=l

V1 = V|x=0,V2 = V|x=l

Θz1 = Θz|x=0,Θz2 = Θz|x=l

and

⎧
⎨

⎩

Fx1 = Fx|x=0,Fx2 = Fx|x=l

Fy1 = Fy
⃒
⃒

x=0,Fy2 = Fy
⃒
⃒

x=l

Mz1 = Mz|x=0,Mz2 = Mz|x=l

(13)  

where l is the distance between the two boundary nodes. The internal 
bending moment and shear force of the straight beam element take the 
following forms: 

Mz = EIz
∂Θz

∂x
,Fy = κGA

(
∂V
∂x

− Θz

)

. (14) 

By substituting Eq. (10) into (13), the relationship between the nodal 
displacement vectordv = [U1,V1,Θz1,U2,V2,Θz2]T and the coefficient 
vector bv = [χ1,χ3,χ4,χ2,χ5,χ6]T can be recast into the linear matrix form: 

dv = Hvbv (15)  

where the matrix Hv is: 

Hv =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 0 0
0 1 1 0 1 1
0 α1 α2 0 α3 α4

e− ik0 l 0 0 eik0 l 0 0
0 e− ik1 l e− ik2 l 0 e− ik3 l e− ik4 l

0 α1e− ik1 l α2e− ik2 l 0 α3e− ik3 l α4e− ik4 l

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16) 

In addition, the nodal force vector Fv = [Fx1,Fy1,Mz1,Fx2,Fy2,Mz2]T is 
associated with the coefficient vector bv, and we have 

Fv = [R1 R2 ]bv = [R1 R2 ]H− 1
v dv (17)  

where the block matrices R1 and R2 are derived as: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

iEAk0 0 0

0 − κGA( − ik1 − α1) − κGA( − ik2 − α2)

0 iEIzα1k1 iEIzα2k2

− iEAk0e− ik0 l 0 0

0 κGA( − ik1 − α1)e− ik1 l κGA( − ik2 − α2)e− ik2 l

0 − iEIzα1k1e− ik1 l − iEIzα2k2e− ik2 l

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

R2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− iEAk0 0 0

0 − κGA( − ik3 − α3) − κGA( − ik4 − α4)

0 iEIzα3k3 iEIzα4k4

iEAk0e− ik0 l 0 0

0 κGA( − ik3 − α3)e− ik3 l κGA( − ik4 − α4)e− ik4 l

0 − iEIzα3k3e− ik3 l − iEIzα4k4e− ik4 l

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(18) 

Therefore, the DSM (Sv) for the in-plane vibration of the beam 
element can be calculated by: 

Sv = [R1 R2 ]H− 1
v . (19) 

By taking advantage of the cross-section symmetry, we can quickly 
set up the DSM for the vibration in the x-z plane from Eq. (19). Besides, 
the spectral formulation of the torsional motion is similar to that of the 

Fig. 4. In-plane vibration of the curved beam. The tangential displacement, 
radial displacement, and rotational slope of the curved beam are denoted by 
Wc, Vc, and Ψc, respectively. The corresponding tensile force, shearing force, 
and bending moment are Nc, Qc, and Mc, respectively. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k0 = ω
̅̅̅̅̅̅̅̅
ρ/E

√

k1 = − k2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

Iz

A
+

EIz

κGA

)
ρAω2

2EIz
+ ω

̅̅̅̅̅̅̅
ρA
EIz

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

1 −
ρIzω2

κGA

)

+

(
Iz

A
+

EIz

κGA

)2ρAω2

4EIz

√√
√
√
√

k3 = − k4 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

Iz

A
+

EIz

κGA

)
ρAω2

2EIz
− ω

̅̅̅̅̅̅̅
ρA
EIz

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

1 −
ρIzω2

κGA

)

+

(
Iz

A
+

EIz

κGA

)2ρAω2

4EIz

√√
√
√
√

(11)   
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axial displacement. The details, which can be found in Refs [43,52], are 
not repeated here for brevity. By assembling the DSMs for different di-
rection vibrations, the spectral formulation for the 3D straight beam is 
formulated as: 

Fb = Sb(ω)db (20)  

where Sb is the full DSM of the straight beam element, and the vectors of 
nodal force and displacement, i.e., Fb and db, incorporate all the tensile, 
bending, and torsion components. 

4.2. Dynamic stiffness matrix of curved beam 

Due to the curved nature, the tangential displacement of a curved 
beam is coupled with its rotation and radial displacement. Therefore, 
compared with the spectral element formulation of straight beams, the 
DSM derivation of curved beams is more challenging. This subsection 
will present the formulation of the DSM of curved beams. 

4.2.1. In-plane vibration 
It is well-known that the vibration features of curved beams can be 

comprehensively characterized by in-plane and out-of-plane modes. In 
this subsection, our efforts will be dedicated to deriving the dynamic 
stiffness formulations of the in-plane vibration. 

As depicted in Fig. 4, a circular curved beam can be characterized by 

its radius R at the neutral axis, the thickness t, and the radian θ. For 
description, we introduce the following dimensionless parameters: 

ηc1 =
t

2R
coth

( t
2R

)
− 1, ηc2 = ηc1(ηc1 + 1) +

t2

12R2, ηc3

= ηc1

(

η2
c1 + ηc1 +

t2

4R2

)

+
t2

12R2 (21) 

Considering the coupling influence of shear deformation and rotary 
inertia, the Timoshenko beam theory is applied to analyze the vibration 
response of curved beams. As formulated in [72], the in-plane vibration 
of the curved beam is governed by: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Qc

∂θ
+ Nc + ω2ρcAcR(1 + ηc1)Vc = 0

∂Mc

R∂θ
+ Qc + ω2ρcAcR(ηc2Wc + ηc3Rψc)Vc = 0

∂Nc

∂θ
− Qc + ω2ρcAcR[(1 + ηc1)Wc + ηc2Rψc] = 0

(22)  

where ω is the angular vibration frequency, and the variables with the 
subscript “c” correspond to the physical parameters of curved beams. 
More specifically, the tensile force Nc, shearing force Qc, and bending 
moment Mc are expressed as 

Nc =
EcAc

R

(
∂Wc

∂θ
− Vc

)

,Qc = κcAcGc

(
∂Vc

R∂θ
+

Wc

R
− ψc

)

,Mc = ηc1EcAcR
∂ψc

∂θ
(23) 

After substituting Eq. (23) into Eq. (22)., one can obtain 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κc

2(1+ν)V
″
c −

(

1 − λc
1+ηc1

sy

)

Vc+

[

1+
κc

2(1+ν)

]

W′
c −

κc

2(1+ν)ψ
′
c =0

κc

2(1+ν)V
′
c+

[
κc

2(1+ν)+λc
ηc2

sy

]

Wc+ηc1ψ″
c −

[
κc

2(1+ν)− λc
ηc3

sy

]

ψc =0

[

1+
κc

2(1+ν)

]

V′
c − W″

c+

[
κc

2(1+ν)− λc
1+ηc1

sy

]

Wc −

[
κc

2(1+ν)+λc
ηc2

sy

]

ψc =0

(24)  

where ν is the Poisson ratio. The frequency parameter λc and the slen-
derness ratio sy are defined as 

λc =
ω2ρcAcR4

EcIy
, sy =

AcR2

Iy
, (25)  

with Iy denoting the cross-sectional inertia moment around the y-axis. 
For the convenience of illustration, we further introduce the following 
dimensionless parameters: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u =
Vc

R
,w =

Wc

R
,ψ =

ψc

R
,

N =
Nc

EcAc
,Qx =

Qc

EcAc
,My =

Mc

EcAcR
.

(26) 

Accordingly, the transfer matrix Cin that relates the general 
displacement vectorUin = [ u w ψ u′ w′ ψ′ ]T and the general force 
vector Fin =

[
N Qx My

]T can be determined from Eq. (23) as below: 

Fin =

⎡

⎢
⎢
⎣

− 1 0 0 0 1 0

0
κc

2(1 + ν)
− κc

2(1 + ν)
κc

2(1 + ν) 0 0

0 0 0 0 0 ηc1

⎤

⎥
⎥
⎦Uin = CinUin (27) 

Mathematically, the general solutions of the in-plane vibration for 
the curve beam element take the spectral form of: 

u(θ) = αine− ipθ,w(θ) = βine− ipθ,ψ(θ) = γine− ipθ (28) 

Fig. 5. Out-of-plane vibration of the curved beam. The transverse deflection, 
bending rotation, and twist angle are denoted by Uc, Φc, and Γc, respectively. 
The corresponding shearing force, tensile moment, and bending moment are Qs, 
Tt, and Mb, respectively. 

Table 1 
Geometric parameters of the metamaterial.  

Structural parameters Design values 

Radius of the curved beams R 15.00 mm 
Length of the interior oblique struts L 45.00 mm 
Half-width of the interior lattice b 25.00 mm 
Length of the exterior vertical beams a 20.00 mm 
Thickness of all beams t 4.00 mm 
Inclined angle of the interior beams θ 45.00◦

Table 2 
Exterior and interior material properties of the metamaterial.  

Material Poisson 
ratio 

Elastic modulus 
(GPa) 

CTE (ppm/ 
◦C) 

Density (kg/ 
m3) 

Steel 0.30 200 12.0 7850 
Invar 

alloy 
0.29 144 1.2 8050  
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where p is the wavenumber. Combining Eqs.(28) and (24) yields an 
eigenvalue problem:   

It is known that nontrivial solutions exist in homogeneous linear 
equations only if the matrix determinant is zero. According to Eq. (29), 
the dispersion relation for the in-plane vibration can be obtained as 

cin,1p6 + cin,2p4 + cin,3p2 + cin,4 = 0 (30)  

which indicates that there exist six wavenumbers p1, p2, …, p6. After 
solving the numerical roots of Eq. (30), one can further calculate αin, i, 
βin, i, and γin, i for each wavenumber pi (i=1, 2, …, 6) from Eq. (29). 

Consequently, the general solutions of the in-plane vibration are 
recast into the linear algebraic form as below: 

u = euα,w = eudiag(β)α,ψ = eudiag(γ)α (31)  

where diag(⋅) is the diagonal operator. The corresponding vectors are 
detailed as 

⎧
⎪⎪⎨

⎪⎪⎩

eu = [ e1 e2 e3 e4 e5 e6 ], ej = e− ipjθ

α = [ αin,1 αin,2 αin,3 αin,4 αin,5 αin,6 ]
T

β = [ β1 β2 β3 β4 β5 β6 ]
T

γ = [ γ1 γ2 γ3 γ4 γ5 γ6 ]
T

(32)  

where the scaled parameters βj and γj (j=1, 2, …, 6) are given by 

βj = βin,j
/

αin,j, γj = γin,j
/

αin,j (33) 

The nodal forces and the displacements at the two ends of the curved 

Fig. 6. Elastic deformation of the metamaterial unit cell. (a) Axial compression along the z direction under the uniform stress of 2000 MPa; (b) Multiaxial 
compression along the three orthogonal directions with each cross-section subjected to 2000 MPa. The gray and colored lines denote the undeformed and deformed 
configurations, respectively. 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

κc

2(1 + ν)p
2 − λc

1 + ηc1

sy
+ 1 ip

[
1 +

κc

2(1 + ν)

]
− ip

κc

2(1 + ν)

ip
κc

2(1 + ν) −
κc

2(1 + ν) − λc
ηc2

sy
ηc1p2 +

κc

2(1 + ν) − λc
ηc3

sy

ip
[
1 +

κc

2(1 + ν)

]
λc

1 + ηc1

sy
− p2 −

κ
2(1 + ν)c

κc

2(1 + ν) + λc
ηc2

sy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
αin
βin
γin

⎤

⎦ =

⎡

⎣
0
0
0

⎤

⎦ (29)   
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Fig. 7. Thermal deformation of the unit with thermal mismatch effect in response to a temperature increase. (a) and (b) depict the thermal expansion of the in-
dependent exterior and interior substructures, respectively. (c) shows the thermal deformation of the entire metamaterial unit. The gray lines denote the undeformed 
configuration, and the colored lines represent the deformed configuration. The metamaterial of cubic symmetry possesses isotropic thermomechanical properties. 
The metamaterial with prescribed parameters exhibits a negative CTE due to the thermal mismatch and re-entrant unfolding mechanisms. 

Fig. 8. Elastic and thermal deformations in different loading scenarios. (a) Multiaxial tensile and compression; (b) thermal expansion and contraction over a wide 
temperature change. The theoretical predictions are well consistent with the simulation results. These case studies show that the metamaterial exhibits linear 
thermoelasticity. . 
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beam are concentrated into the vectors fin and din: 
{f in =[N(0) Q(0) M(0) N(θ) Q(θ) M(θ)]T =[N1 Q1 M1 N2 Q2 M2 ]

T
,

din =[u(0) w(0) ψ(0) u(θ) w(θ) ψ(θ)]T =[u1 w1 ψ1 u2 w2 ψ2 ]
T
.

(34) 

According to Eq. (31), we obtain the following relationship: 

din =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1
β1 β2 β3 β4 β5 β6
γ1 γ2 γ3 γ4 γ5 γ6
e1 e2 e3 e4 e5 e6

β1e1 β2e2 β3e3 β4e4 β5e5 β6e6
γ1e1 γ2e2 γ3e3 γ4e4 γ5e5 γ6e6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

α = Hinα (35) 

Combining Eqs.(31) and (35), one can obtain 

u = euH− 1
in din,w = eudiag(β)H− 1

in din,ψ = eudiag(γ)H− 1
in din (36) 

On this basis, substituting Eq. (36) into Eq. (27) yields the mapping 
relation from din to fin, which is expressed as 

f in =

[
Cin 0
0 Cin

]

RinH− 1
in din = Sindin (37)  

where Sin is the DSM of the in-plane vibration of the curved beam, and 
the matrix Rin is derived as: 

Rin=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 β1 γ1 − ip1 − ip1β1 − ip1γ1 e1 β1e1 γ1e1 − ip1e1 − ip1β1e1 − ip1γ1e1
1 β2 γ2 − ip2 − ip2β2 − ip2γ2 e2 β2e2 γ2e2 − ip2e2 − ip2β2e2 − ip2γ2e2
1 β3 γ3 − ip3 − ip3β3 − ip3γ3 e3 β3e3 γ3e3 − ip3e3 − ip3β3e3 − ip3γ3e3
1 β4 γ4 − ip4 − ip4β4 − ip4γ4 e4 β4e4 γ4e4 − ip4e4 − ip4β4e4 − ip4γ4e4
1 β5 γ5 − ip5 − ip5β5 − ip5γ5 e5 β5e5 γ5e5 − ip5e5 − ip5β5e5 − ip5γ5e5
1 β6 γ6 − ip6 − ip6β6 − ip6γ6 e6 β6e6 γ6e6 − ip6e6 − ip6β6e6 − ip6γ6e6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

(38)  

4.2.2. Out-of-plane vibration 
Aftering the DSM of the in-plane vibration is derived, this subsection 

will further develop the dynamic stiffness formulation for the out-of- 
plane vibration of the curved beam. 

The governing equations for the out-of-plane vibration of the curved 
Timoshenko beam, as illustrated in Fig. 5, are represented as 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Tt

R∂θ
+

Mb

R
+ ρcJzω2Γc = 0

−
∂Mb

R∂θ
+

Tt

R
− Qs + ρcIxω2Φc = 0

∂Qs

R∂θ
+ ρcAcω2Uc = 0

(39)  

where Ix is the cross-section inertia moment around the x-axis, and Jz is 
the polar inertia moment. The bending moment Mb, shearing force Qs, 
and torsional moment Tt are given by: 

Mb =
EcIx

R

(

− Γc −
∂Φc

∂θ

)

,Qs = κcGA
(

Φc +
∂Uc

R∂θ

)

,Tt =
GCz

R

(

− Φc +
∂Γc

∂θ

)

,

(40)  

where Cz is the torsional inertia moment. 

Table 3 
Effective CTE and elastic modulus of the metamaterial with Steel-Invar.  

Results Elastic modulus (GPa) CTE (ppm/ ◦C) 

Theoretical prediction 17.0952 –9.8557 
FE simulation 17.3098 –9.9405 
Relative error –1.24% –0.86%  

Fig. 9. Transmittance analysis on the transverse and longitudinal vibrations for the metamaterial via SEM and FEM. Three apparent vibration attenuation valleys 
exist on the transmittance response over the frequency ranges of 1036.50–2217.57 Hz, 2633.99–3497.31 Hz, and 3942.71–4517.63 Hz, respectively. 

Fig. 10. Irreducible Brillouin zone (the gray area) of the metamaterial. kx, ky 
and kz are the components of the wave vector in three directions. Along the 
boundary path, the varying curve of the eigenfrequency with wave vector k can 
be obtained, i.e., the band structure of the metamaterial. 
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Substituting Eq. (40) into Eq. (39) yields 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μΓ’’
c −

[
1 − λx

(
s− 1

x + s− 1
y

)]
Γc − (1 + μ)Φ’

c = 0

− κc
G
E

sxU’
c + (1 + μ)Γ’

c + Φ’’
c −

(

μ + κc
G
E

sx −
λx

sx

)

Φc = 0

κc
G
E

sxU’’
c + λxUc + κc

G
E

sxΦ’
c = 0

(41)  

where the intermediate variables are defined as: 

λx =
ω2ρcAcR4

EcIx
, μ =

GCz

EcIx
, sx =

AcR2

Ix
(42) 

In addition, the following dimensionless parameters are introduced 
to simplify the formulation: 

Mx =
RMc

EcIx
,Qy =

R2Qs

EcIx
, T =

RTt

EcIx
(43) 

Given that Uout = [Φb Ut Γt Φ’
b U’

t Γ’
t ]

T and Fout =
[
Mx Qy T

]T, we have 

Fout =

⎡

⎢
⎢
⎢
⎣

0 0 − 1 − 1 0 0

κc
G
Ec

sx 0 0 0 κc
G
Ec

sx 0

− μ 0 0 0 0 μ

⎤

⎥
⎥
⎥
⎦

Uout = CoutUout (44) 

Following the spectral analysis procedures, the general solutions of 
Eq. (41) are assumed to be 

Φc(θ) = αoute− iqθ,Uc(θ) = βoute
− iqθ,Γc(θ) = γoute

− iqθ (45)  

where q is the wavenumber. Substituting Eq. (45) into Eq. (41) yields 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

iq(1+μ) 0 λx

(
s− 1

x +s− 1
y

)
− q2μ − 1

λxs− 1
x − q2 − μ − κc

G
Ec

sx iqκc
G
Ec

sx − iq(1+μ)

− iqκc
G
Ec

sx λx − q2κc
G
Ec

sx 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

αout

βout

γout

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

0

0

0

⎤

⎥
⎥
⎦

(46) 

The existence condition of nontrivial solutions gives the sixth-order 
dispersion relation as 

cout,1p6 + cout,2p4 + cout,3p2 + cout,4 = 0 (47) 

From Eqs. (46) and (47), αout, j, βout, j, and γout, j can be fully deter-
mined for each wavenumber qj (j=1, 2, …, 6). On this basis, similar to 
the derivation of Hin and Rin, obtaining the transfer matrices Hout and 
Rout for the out-of-plane vibration becomes easy. For brevity, the ex-
pressions of Hout and Rout are not repeated here. Finally, the DSM for the 
out-of-plane vibration (Sout) can be formulated as 

fout =

[
Cout 0

0 Cout

]

RoutH− 1dout = Soutdout (48)  

where the nodal forces (fout) and the general displacements (dout) at the 
two ends are defined as: 

Fig. 11. Band structure of the metamaterial. The dispersion 
curves in red and blue correspond to the transverse and lon-
gitudinal modes, respectively. (a) The transverse transmittance 
curve of the metamaterial comprising 10 unit cells is appended 
for comparison. The amplitude is unit-normalized. The vibra-
tion attenuation valleys appear in between those red curves. A, 
B, C, and D are located at the bounds of transverse band gaps, 
and their corresponding frequencies are 254.41 Hz, 600.89 Hz, 
954.38 Hz, and 2217.57 Hz, respectively. (b) The longitudinal 
transmittance curve is appended for comparison. The ampli-
tude is unit-normalized. The vibration attenuation valleys form 
in between those blue curves. A’, B’, C’, and D’ are located at 
the longitudinal band gap bounds, with frequencies of 1036.50 
Hz, 2452.68 Hz, 2633.99 Hz, and 3584.64 Hz, respectively.   
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{
dout = [Φb1 Ut1 Γt1 Φb2 Ut2 Γt2 ]

T

fout =
[

Mx1 Qy1 T1 Mx2 Qy2 T2
]T

(49)  
4.3. Dynamic response of the metamaterial 

After the DSMs for straight and curved beams are derived, this sub-
section will show how to obtain the DSM for the entire system. 

Fig. 13. Vibration patterns at the bounds of the transverse band gaps. For the first band gap: (a) the lower bound at position A and (b) the upper bound at position B 
in the top sub-figure of Fig. 11. For the second band gap: (c) the lower bound at position C and (d) the upper bound at position D in the top sub-figure of Fig. 11. 

Fig. 12. Imaginary part of the band structure for the metamaterial. Annotations I and II are located at the transverse transmittance curve as shown in Fig. 11(a), 
while III is positioned at the longitudinal transmittance curve as depicted in Fig. 11(b). 
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Furthermore, the dynamic response of the metamaterial will be analyzed 
to quantify its vibration suppression ability. 

The global DSM of the proposed metamaterial can be constructed by 
following the same assembly procedure as widely adopted in the FEM. In 
the frequency response analysis, the external load is zero at the specified 
nodes, and no reaction force yields at free nodes. For the convenience of 

imposing these boundary conditions, the standard governing equation is 
recast into 

Sd = r⇒

[
Ss Ssf

ST
sf Sf

][
ds
df

]

=

[
rs
0

]

(50)  

where S is the DSM of the entire system; d stands for the global 
displacement vector; r denotes the reaction force. The subscripts “s’’ and 
“f’’ indicate the components associated with the specified and free 
nodes, respectively. Thus, the unknown variables are determined as 
⎧
⎨

⎩

df = − S− 1
s ST

sfds

rs =
(

Ss − SsfS− 1
f ST

sf

)
ds

(51) 

Regarding the vibration suppression performance evaluation, a 
harmonic excitation is imposed at the clamped end of the metamaterial 
to trigger transverse or longitudinal vibration. By examining the free- 
end vibration via Eq. (49), the transmittance of the metamaterial can 
be evaluated by 

τ(ω) = 20log(dout / din) (52)  

where dout and din are the vibration displacements at the output and 
input ends, respectively. It is clear from the logarithmic definition that 
the input vibration is suppressed at the output end when τ(ω) < 0. 
Furthermore, the band gap width [73], which is a crucial measure of 
vibration suppression capability, is also evaluated. As multiple band 

Fig. 14. Vibration patterns at the bounds of the longitudinal band gaps. For the first band gap: (a) the lower bound at position A’ and (b) the upper bound at position 
B’ in the bottom sub-figure of Fig. 11. For the second band gap: (c) the lower bound at position C’ and (d) the upper bound at position D’ in the bottom sub-figure 
of Fig. 11. 

Fig. 15. Variations of the effective CTE with four main geometrical parameters. 
When other parameters remain unchanged, the variable of interest varies in a 
wide range as prescribed in the label. For description, the independent variables 
are normalized into [− 1, 1]. Tuning L or b can adjust the effective CTE from 
negative to positive. In contrast, R and a are less sensitive to getting rid of 
negative CTE. 
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gaps occur over different frequency ranges, this study adopts the 
central-frequency normalized bandwidth ΔG [43,74] to make a unified 
assessment, which is formulated as 

ΔG =
2(fu − fl)

fu + fl
(53)  

where fu and fl denote the upper and lower bound frequencies of the 
band gap, respectively. 

5. Model verification and results discussion 

This section will conduct FE simulations to verify the developed 
theoretical models in Sections 3 and 4. In addition to examining the CTE 
of the metamaterial, the transmittance response and band structure will 
be evaluated to quantify the vibration suppression performance. 

5.1. Effective CTE of the metamaterial 

In this subsection, the developed thermoelastic model will be vali-
dated for predicting the Effective CTE of the metamaterial. Furthermore, 
a comprehensive discussion on the thermal mismatch phenomenon will 
be provided to elucidate the underlying deformation mechanism. 

The geometric parameters are set the same for the theoretical and 
simulation models, as listed in Table 1. Considering the CTE difference 
[24] and manufacturing feasibility [75], steel and Invar alloy are, 
respectively, used for the materials of exterior star-shaped re-entrant 
lattices and interior rudder-shaped reinforcement struts. The physical 
parameters of the two metallic materials are listed in Table 2. 

To understand the deformation mechanism, the mechanical and 
thermal (temperature) loading are separately applied on the unit cell of 
the metamaterial. Fig. 6 depicts the simulated deformations under uni-
axial and multiaxial compression conditions. As observed in Fig. 6(a), 
under the uniaxial compression in the z-direction, the metamaterial does 
not contract in the other two directions, which is different from the 
folding phenomenon of general re-entrant structures [62]. This is because 
the interior reinforcement struts weaken the planar contraction defor-
mation of corners. Under the multiaxial compression with periodic 
boundary conditions, it can be seen from Fig. 6(b) that the exterior 
oblique lattices and interior curved struts are dominated by bending 
deformations, while the others are by stretching deformations. In addi-
tion, due to the cubic symmetry of the structure, the struts in the three 
orthogonal planes suffer the same deformations under the symmetric 
loading. Thus, essential parameters for describing the constitutive re-
lations are reduced, making the design of such metamaterials easier. 

Subject to a temperature increase of 200℃, the thermal-induced 
deformation of the unit cell is shown in Fig. 7. Similar to the case 
under the multiaxial compression in Fig. 6(b), the isotropic thermo-
elastic features also incorporate bending-dominated and stretching- 
dominated deformations. As will be demonstrated in the next section, 
such a combined deformation mechanism with the thermal mismatch 
effect can endow the metamaterial with a tunable CTE over a wide 
range. 

Fig. 16. Effective CTE of the metamaterial varying with the 
length of oblique struts L and the interior height b. (a) 3D- 
viewed mapping among the CTE, L, and b; (b) Contour plots 
of CTE versus L and b. Noticeably, the effective CTE can be 
tuned from positive to negative. Specifically, the CTE increases 
monotonically from negative to positive with the increase of L. 
In addition, a transition point (L=41.08 mm) exists for the 
effect of b on the CTE. The effective CTE increases with the rise 
of b when L is less than 41.08 mm. However, when L exceeds 
42.7 mm, the effective CTE initially declines before increasing 
with the increase of b. The red line in the second subplot 
provides all available combinations for achieving zero CTE.   

Table 4 
Geometric parameters of four metamaterials with zero CTE.  

Geometric parameters of Metamaterials #1 #2 #3 #4 

Half-width of the interior lattice b (mm) 24.00 27.00 30.00 32.00 
Length of the interior oblique struts L (mm) 37.06 40.27 43.74 46.16  
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Specifically, the thermal mismatch phenomenon arises from the 
unequal thermal strains experienced by two elements with different 
CTEs when subjected to heating without any constraints. As a result of 
the constraints imposed by the connection between the elements, the 
thermal strain redistributes to achieve an equilibrium state. This redis-
tribution of strain leads to a change in the thermally-induced deforma-
tion of a freestanding beam, triggering thermal expansion or shrinkage 
of the fundamental element. Fig. 7 depicts the thermal mismatch effect 
on the metamaterial, with an enlarged view showing the actual thermal 
deformation. 

In response to a temperature increase, all struts in the unit cell 
experience stretching. Since the CTE of the interior material is smaller 
than that of the exterior material, it is observed in Fig. 7(a) and (b) that 

the thermal expansion deformations of the corner for the independent 
exterior and interior substructures are 0.10803 mm and 0.01089 mm, 
respectively, exhibiting a tenfold difference in magnitude. When the two 
substructures are connected, as depicted in Fig. 7(c), the thermal 
mismatch between them cause the interior substructure to exert pulling 
forces on the exterior one along the diagonal directions of metamaterial. 
As a result, the corner deformation is altered to 0.02857 mm. Moreover, 
these forces induce bending deformations in the exterior inclined beams, 
leading to inward elastic contractions at re-entrant points. Conse-
quently, unlike thermal expansion, the metamaterial undergoes 
shrinkage along the three principal directions, leading to a reduction in 
its characteristic lengths. 

Based on the above discussion, it can be summarized that the thermal 

Fig. 17. Vibration propagation responses of the four metamaterials with zero CTE. (a) Transverse vibration; (b) longitudinal vibration. Every metamaterial exhibits 
three primary band gaps for the transverse vibration and a dominant band gap for the longitudinal vibration. More specifically, the start and end frequencies of band 
gaps are detailed in Table 5. 

Table 5 
Band gaps of the four dual-functional metamaterials.  

Metamaterial Performance Transverse vibration Longitudinal vibration 

#1 Band gaps (Hz) [298.31, 679.47], [1205.02, 3477.41], [3577.18, 4999.36] [1563.78, 4079.83] 
Normalized bandwidth 0.78, 0.97, 0.33 0.89 

#2 Band gaps (Hz) [302.23, 792.86], [1320.12, 3073.98], [3385.59, 4938.32] [1365.23, 3658.02] 
Normalized bandwidth 0.90, 0.80, 0.37 0.91 

#3 Band gaps (Hz) [304.00, 997.59], [1442.14, 2691.65], [3028.10, 4757.92] [1183.46, 3216.49] 
Normalized bandwidth 1.07, 0.60, 0.44 0.92 

#4 Band gaps (Hz) [305.07, 1121.56], [1373.29, 2445.26],  
[2793.26, 4650.15] 

[1083.18, 2935.90] 

Normalized bandwidth 1.14, 0.56, 0.50 0.92  
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contraction behavior observed is a result of the combined thermal 
mismatch and re-entrant unfolding mechanisms. When the magnitude of 
elastic contraction surpasses that of microscopic thermal expansion, a 
metamaterial with a negative CTE can be achieved. 

To verify the accuracy of the analytical model, several cases with 
different mechanical and temperature loadings are simulated to make 
comparisons. By measuring the elastic deformation between the two 
opposite connection nodes of the unit cell, both elastic deformation and 
thermal expansion are obtained via FE simulations and theoretical 
predictions. As shown in Fig. 8, the analytical and simulation results are 
in good agreement. Besides, linear responses are observed for the ther-
moelastic deformations, indicating that the elastic modulus and CTE are 
load-independent and temperature-independent within the linear 
regime. 

According to the stress-strain relationship, the gradients of the curves 
in Fig. 8(a) and (b) are associated with the elastic modulus (Eeff) and CTE 
of the metamaterial. On this basis, the two physical parameters are 
determined and summarized in Table 3. Regarding the effective elastic 
modulus (Eeff) and CTE, the relative errors between the theoretical 
prediction and FE simulation are only –1.24% and –0.86%, respectively. 
The minor discrepancies verify that the developed analytical model is of 
satisfactory accuracy. 

5.2. Dynamic response of the metamaterial 

This section will validate the accuracy of the analytical model in 
characterizing vibration responses by comparing theoretical predictions 
with finite element simulations. On this basis, the band gap formation 
mechanisms will be further revealed for the metamaterial via the com-
plex band structure and vibration mode analysis. 

The dynamic analysis in this section considers a metamaterial con-
sisting of 10 unit cells along the x-direction. As depicted in Fig. 9, both 
SEM and FEM are used to evaluate the transmittance characteristics of 
the metamaterial. Herein, COMSOL Multiphysics® is employed to build 
the corresponding FE model. 

Fig. 9 compares the results from the developed SEM model and the 
FE simulation. The transmittance response predicted by the SEM agrees 
well with FE simulation results, indicating that the developed dynamic 
model has excellent prediction accuracy. Three band gaps, respectively, 
form over the frequency ranges of 1036.50–2217.57 Hz, 
2633.99–3497.31 Hz, and 3942.71–4517.63 Hz. It can be calculated 
that the normalized bandwidths are ΔG1=0.76, ΔG2=0.28, and 
ΔG3=0.14, respectively. Compared with the meta-structures reported in 
[38,43], our proposed metamaterial produces three wider band gaps at 
low-frequency ranges, demonstrating a broadband low-frequency vi-
bration suppression ability. 

Solving the extreme values of multi-order eigenfrequencies within 
the first Brillouin zone is a well-known method to capture the features of 
band gaps. Moreover, performing the symmetric operation on the first 
Brillouin zone allows for extracting the irreducible Brillouin zone (IBZ), 
which represents the smallest undivided region of frequency and 
wavenumber. The dispersion relation of the elastic metamaterial can be 
completely characterized along the boundary of the IBZ. The proposed 
metamaterial is a 3D structure. We can obtain its band structure by 
sweeping the boundaries of the IBZ, as shown in Fig. 10. However, 
considering the complexity and abundance of information in the full 
band, we focus our study on the transverse and longitudinal wave 
propagation within a single row of unit cells in the metamaterial. To 
simplify the analysis, we reduce the 3D IBZ to a 1D IBZ and only consider 
the periodicity in the x-direction. This allows us to effectively capture 
the desired characteristics by sweeping the wavenumber along the path 
Γ → X. 

The band structure of the metamaterial, as shown in Fig. 11, is 
further investigated to figure out the band gap formation mechanisms. 
The Floquet periodic boundary condition is applied to the representative 
unit cell of the metamaterial without restrictions to wave types. We post- 

processed the results to separate the transverse and longitudinal modes 
and plotted them in red and blue, respectively. In Fig. 11(a), we also 
appended the transverse transmittance spectra from Fig. 9. It can be 
found that the attenuation valleys form in between the red curves, 
indicating the good agreement between the band structure and trans-
mittance analysis results. Based on the valley profile, we can infer the 
band gap type. For example, the first attenuation valley in Fig. 11(a) is 
nearly symmetric, and the valley bottom is smooth; thus, we can infer 
that a BS band gap forms the first attenuation valley. While the second 
attenuation valley in Fig. 11(a) is asymmetric and has downward spikes; 
thus we can infer that an LR band gap forms the second attenuation 
valley. In a similar way, we can also identify the types of longitudinal 
band gaps. The vibration attenuation valleys in Fig. 11(b) form in be-
tween those blue curves. The valley profiles imply that the first two are 
formed by the LR mechanism. The above conjectures based on the 
transmittance profile can be verified by the band structure analysis. 

As depicted in Fig. 12, the imaginary part of the band structure, 
which provides attenuation information [76], is calculated to facilitate 
the mutual verification of the transmittance results. According to the 
distinct characteristics of two band gap mechanisms [77–79], it is 
known that the BS mechanism forms the first transverse band gap, as its 
imaginary part varies continuously and smoothly throughout the entire 
band gap. In contrast, the second transverse band gap, exhibiting a cusp 
(an abrupt change in slope) in its imaginary part, arises from the LR 
mechanism. In addition, we can observe two corners (I and II) at the 
bottom of the imaginary part of the second transverse band gap. This 
feature aligns well with the transmittance result shown in Fig. 11(a). 
Moreover, the first longitudinal band gap belongs to the LR type, as 
evidenced by the sharp attenuation valley at the bottom (annotation III 
in Fig. 11(b)), which accords with the spike-like feature of the imaginary 
part in Fig. 12. 

Fig. 13 demonstrates the vibration patterns at the transverse band 
gap bounds, i.e., A, B, C and D in Fig. 11(a). Fig. 13(a) and (b) show the 
vibration patterns at the lower and upper bounds of the first band gap in 
Fig. 11(a). It can be seen that the whole structure is conducting 
consistent vibration motion, i.e., the color depth (indicating the 
displacement amplitude) varies smoothly from the left connection strut 
to the right side. It is well-known that the LR mechanism induces band 
gaps by producing out-of-phase motions in microstructures. However, 
no such sign is observed in Fig. 13(a). Moreover, the vibration pattern at 
the upper bound of the first band gap, as shown in Fig. 13(b), also has no 
sign of local resonance. Therefore, we can affirm that the first transverse 
band gap is formed based on the BS mechanism, which agrees with the 
prediction based on the transmittance profile. The things of the second 
band gap become different. Fig. 13(c) shows that the left connection 
strut is moving downward, while the struts at the flank are deforming 
upward. In contrast, the right connection strut is moving upward, and 
the struts at its flank are deforming downward. This vibration pattern 
clearly shows that the microstructures (the struts at the flank) are con-
ducting out-of-phase motions with the host structure (connection 
struts). Similarly, an analogous vibration pattern is found in Fig. 13(d). 
Therefore, we can affirm that the second transverse band gap must be an 
LR type. 

The vibration patterns at the bounds of the longitudinal band gaps, i. 
e., A’, B’, C’ and D’ in Fig. 11(b), are presented in Fig. 14. For the vi-
bration patterns at the bounds of the first band gap, we can see that the 
connection struts almost do not vibrate. Either the frame struts (Fig. 14 
(a)) in the same vertical plane or the struts at the flank in the orthogonal 
horizontal plane (Fig. 14(b)) are conducting the most intense vibration 
to counteract the external excitation. The vibration pattern in Fig. 14(c) 
is similar. Fig. 14(d) shows that the connection struts are moving left-
ward, while the frame struts are deforming rightward. All these vibra-
tion patterns in Fig. 14 exhibit the signs of local resonance and out-of- 
phase motions in microstructures. Therefore, we affirm that the first 
two longitudinal band gaps are LR types, which agrees well with the 
identification results based on the transmittance profile. 
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5.3. Customizing the dual-functional metamaterial 

After verifying the developed theoretical models, this section will 
demonstrate how the dual-functional metamaterial with zero CTE and 
vibration suppression performance can be obtained by adjusting geo-
metric parameters. 

As illustrated in Section 2, the geometric configuration of such 
metamaterials is determined by six independent parameters. Like pre-
vious studies [27,80], the thickness t of struts is selected as a dimen-
sional reference of the whole system. Besides, the inclined angle θ of the 
interior beams is constrained at 45◦ to support the desired orthogonal 
symmetry. For the remaining four parameters, their effects on the CTE of 
the metamaterial over specific ranges are investigated and revealed in 
Fig. 15. The parameter search space, or the feasible range of parameters, 
is determined by the geometric constraints of the metamaterial. As 
designed in Fig. 1(a), threefold constraints must be satisfied: (I) the 
interior rudder-shaped structure should not interfere with the exterior 
star-shaped structure; (II) all corners of the unit cell must be confined 
within the overall height of the unit cell; and (III) the star-shaped 
structure should maintain its re-entrant configuration. Mathematically, 
the above geometric constraints are summarized as 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Lsinθ > b > R +
t
2

β =
π
2
− θ + arctan

2bcosθ − t − tsinθ
2L − 2bsinθ − tcosθ

<
π
2

L +
t
2

tan
2θ + 2β − π

4
< a + b

(54) 

To facilitate the parametric study, the feasible ranges of the param-
eters are further rounded into integers. 

As can be observed in Fig. 15, the effective CTE is positively asso-
ciated with the increase of R or a. Nevertheless, the CTE remains 
negative within the prescribed ranges, implying that R and a have no 
significant impact on CTE. The CTE sign of the metamaterial is more 
sensitive to L and b: over the variation range, the CTE changes from 
negative/positive to positive/negative. Hence, by appropriately select-
ing L and b, zero CTE metamaterials can be obtained without signifi-
cantly altering their original geometric topology. 

Subsequently, the coupling effects of the identified sensitive pa-
rameters (L and b) are further investigated to provide the parameter 
tuning scheme for achieving zero CTE. Fig. 16 shows how the effective 
CTE varies with the length of oblique struts (L) and the interior height 
(b). The other parameters remain constant, as prescribed in Table 1. It is 
seen from Fig. 16 that with the increase of L, the effective CTE mono-
tonically changes from positive through zero to negative. Compared 
with the influence of L on the CTE, the relation between the interior 
height b and the CTE is more complicated. Specifically, when L is smaller 
than 41.08 mm, the CTE shows the same monotonicity as b. However, 
once L > 41.08 mm, the effective CTE initially decreases, then increases 
with the rise of b. Moreover, isotropic negative or positive CTE can be 
achieved with a magnitude as large as several to dozens of times that of 
the constituent materials. 

According to Fig. 16(b), four zero CTE metamaterials with the pa-
rameters listed in Table 4 are chosen. Their band gap characteristics and 
vibration suppression abilities are investigated and compared. Fig. 17 
plots the transmittances of the four zero CTE metamaterials. The band 
gaps are identified and summarized in Table 5. As observed in Fig. 17(a), 
three primary band gaps occur in the transverse vibration of the meta-
materials. In particular, the larger the geometric dimensions, the wider 
the first and third band gaps, but the narrower the second band gap. 
Moreover, as the design parameters increase gradually, different in-
fluences are brought to the start frequencies of the three band gaps, with 
tendencies of being nearly unchanged, being shifted to the higher fre-
quency and lower frequency, respectively. While the end frequencies of 
the three band gaps tend to decline, decline, and rise, respectively. 

Regarding the longitudinal vibration of the four metamaterials, the 
transmittance responses, as shown in Fig. 17(b), reveal a dominant band 
gap within the frequency range below 5000 Hz. It is found that the 
bandwidth reduces with the increase of L and b, and the band gap shifts 
towards the lower frequency. These results indicate that the band gaps of 
the dual-functional metamaterial can also be tuned by adjusting the 
geometric parameters. 

Furthermore, corresponding normalized bandwidths are calculated 
for the four metamaterials. As listed in Table 5, the normalized band-
width for the transverse vibration reaches 0.33–1.14, and the bandwidth 
for the longitudinal vibration is more than 0.89. These multiple broad-
band gaps provide direct evidence that such metamaterials have 
exceptional vibration suppression ability [38,43]. In particular, it is 
worth noticing the fascinating feature that the transmittance valley at 
low frequencies, i.e., 298.31–1121.56 Hz, will be beneficial to the 
transverse vibration mitigation of engineering structures in practical 
applications [35]. 

6. Conclusions 

This study has presented a novel dual-functional metamaterial with 
zero thermal expansion and broadband vibration suppression via 
rigorous theoretical analyses and in-depth technical discussions. The 
main concluding remarks are summarized below. 

Leveraging the thermal mismatch and band gap effects, the proposed 
metamaterial has successfully achieved zero thermal expansion and 
broadband vibration suppression by incorporating star-shaped re- 
entrant lattices and locally rudder-shaped struts made of two-phase 
materials. Moreover, it has been verified that the developed theoret-
ical models can accurately predict the thermoelastic properties and 
dynamic responses of the proposed metamaterial with complex geo-
metric topology. 

Comprehensive analyses have revealed the influences of geometric 
parameters on the effective CTE and vibration suppression performance 
of the dual-functional metamaterials. Particularly, the length of oblique 
struts and the interior height are found to have significant impacts on 
CTE. By tuning the two key parameters, the desired thermoelastic and 
vibration properties can be customized. It enables the attainment of 
isotropic negative or positive CTE with magnitudes several to dozens of 
times larger than the constituent materials, indicating its great potential 
for practical engineering applications. Meanwhile, the normalized 
bandwidth for transverse vibration ranges from 0.33 to 1.14, and the 
bandwidth for longitudinal vibration exceeds 0.89, demonstrating the 
capability for broadband vibration suppression. 

To summarize, this study has provided valuable insights into the 
integration of dual functionalities in metamaterials and developed an 
efficient theoretical framework for designing multi-physics coupled 
meta-structures. 
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Appendix A. Force analysis of the representative volume element 

Given the constraints and force diagrams as described in Fig. 2(d), the internal sub-structure satisfies the following equations: 
{

FV = FC;FH = − FB;

MG = FC(Lcosθ − R) − FB(Lsinθ − R) + MC − MB.
(55) 

On this basis, Table A. 1 presents the force equilibrium conditions of each strut under axial loadings, in which θj (j = 1, 2, 4, 5) is determined by the 
six independent geometric parameters. 

Table A 
1. Force equilibrium conditions of each strut under axial loadings.  

No. Struts Force diagrams Internal forces 

1 AG F1a = FAcosθ1 − Fysinθ1
F1s = FAsinθ1 + Fycosθ1
M11 = MA + FAx1sinθ1 + Fyx1cosθ1 

2 DG F2a = FDsinθ2 − Fxcosθ2
F2s = FDcosθ2 + Fxsinθ2
M22 = MD + FDx2cosθ2 + Fxx2sinθ2 

3 EG F3a = FCsinθ + FBcosθ
F3s = FCcosθ − FBsinθ
M33 = − FCx3cosθ + FBx3sinθ + MC − MB
− FB(Lsinθ − R) + FC(Lcosθ − R)

4 BE F4a = FBcosθ4
F4s = FBsinθ4
M44 = MB − FBR(1 − cosθ4)

5 CE F5a = FCsinθ5
F5s = FCcosθ5
M55 = MC − FCR(1 − cosθ5)
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